Coupling between atmospheric layers in gaseous giant planets due to lightninggenerated electromagnetic pulses
نویسنده
چکیده
Atmospheric electricity has been detected in all gaseous giants of our solar system and is therefore likely present also in extrasolar planets. Building upon measurements from Saturn and Jupiter, we investigate how the electromagnetic pulse emitted by a lightning stroke affects upper layers of a gaseous giant. This effect is probably significantly stronger than that on Earth. We find that electrically active storms may create a localized but long-lasting layer of enhanced ionization of up to 103 cm−3 free electrons below the ionosphere, thus extending the ionosphere downward. We also estimate that the electromagnetic pulse transports 107 J to 1010 J toward the ionosphere. There emissions of light of up to 108 J would create a transient luminous event analogous to a terrestrial “elve.”
منابع مشابه
Properties of the I Deep Atmospheres of the Planets from Radioastronomical
Our knowledge of the composition and physical properties of planetary atmospheres is impotiant for the understanding of the origin and evolution of the planets themselves, as well as for providing a comparative basis for understanding the Earth”s atmosphere. The physical conditions of planetary atmospheres vary widely from place to place within a given atmosphere and from planet to planet. Cons...
متن کاملThe Internal Structural Adjustment due to Tidal Heating of Short - Period Inflated Giant Planets
Several short-period Jupiter-mass planets have been discovered around nearby solar-type stars. During the circularization of their orbits, the dissipation of tidal disturbance by their host stars heats the interior and inflates the sizes of these planets. Based on a series of internal structure calculations for giant planets, we examine the physical processes which determine their luminosity-ra...
متن کاملEvolutionary models for cool brown dwarfs and extrasolar giant planets . The case of HD 209458
We present evolutionary models for cool brown dwarfs and extra-solar giant planets. The models reproduce the main trends of observed methane dwarfs in near-IR color-magnitude diagrams. We also present evolutionary models for irradiated planets, coupling for the first time irradiated atmosphere profiles and inner structures. We focus on HD 209458-like systems and show that irradiation effects ca...
متن کاملInteriors of giant planets inside and outside the solar system.
An understanding of the structure and composition of the giant planets is rapidly evolving because of (i) high-pressure experiments with the ability to study metallic hydrogen and define the properties of its equation of state and (ii) spectroscopic and in situ measurements made by telescopes and satellites that allow an accurate determination of the chemical composition of the deep atmospheres...
متن کاملFormation of Giant Planets
The observed properties of giant planets, models of their evolution and observations of protoplanetary disks provide constraints on the formation of gas giant planets. The four largest planets in our Solar System contain considerable quantities of hydrogen and helium; these gasses could not have condensed into solid planetesimals within the protoplanetary disk. Jupiter and Saturn are mostly hyd...
متن کامل